Hassel, W.; Tan, K. S.; Stratmann, M.: Examination of particle-surface contact under tribo-corrosion conditions with a novel low force micro indenter. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Lill, K. A.; Stratmann, M.; Frommeyer, G.; Hassel, A. W.: On the corrosion resistance of a new class of FeCrAl light weight ferritic steels. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Wicinski, M.; Hassel, A. W.; Stratmann, M.: Corrosion under Cyclic Conditions Monitored by a Simultaneous Scanning Kelvin Probe and Galvanic Current Measurement. 55rd Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Extended Abstract: Non-destructive, in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new scanning Kelvin probe blister Test. Euradh2004/Adhesion2004, Freiburg, Germany (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: The role of the electrode potential at the buried polymer/metal interface on electrochemically driven delamination: The case MgZn2. ISE Annual Meeting, Thessaloniki, Greece (2004)
Stratmann, M.: Tailored semiconducting oxides for improved corrosion resistance and adhesion of organic coatings. Gordon Research Conference on Aqueous Corrosion, New London, NH, USA (2004)
Grundmeier, G.; Wapner, K.; Stratmann, M.: Applications of a new height regulated Scanning Kelvin Probe for the study of polymer/metal interfaces in corrosive environments. ICEPAM 2004, Helsinki, Finnland (2004)
Rohwerder, M.; Stratmann, M.: The effect of Oxygen Reduction on the Self-Assembly and Stability of Thiol Monolayer Films. 205th Meeting of the ECS, San Antonio, TX, USA (2004)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: Galvanizing of Defined Model Samples: On the Road to a Fundamental Physical Understanding of Hot-Dip Galvanizing. GALVATECH, Chicago, USA (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: Development of Zinc-Alloy Coatings with Inherent Delamination Stability for Organic Coatings. Galvatech '04, Chicago, IL, USA (2004)
Stratmann, M.: Moderne Schutzschichtsysteme auf der Basis molekularer Grenzflächenkonzepte. 25. Sitzung, Nordrhein-Westfälische Akademie der Wissenschaften, Düsseldorf, Germany (2004)
Stratmann, M.: Moderne Schutzschichtsysteme auf der Basis molekularer Grenzflächenkonzepte. 25. Sitzung, Nordrhein-Westfälische Akademie der Wissenschaften, Düsseldorf, Germany (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Non-destructive, real time in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new Scanning Kelvin Probe Blister Test. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…