Davut, K.; Zaefferer, S.: Improving the Reliability of EBSD-based Texture Analysis by a New Large Area Mapping Technique. Materials Science Forum 702-703, pp. 566 - 569 (2012)
Davut, K.; Zaefferer, S.: The effect of size and shape of austenite grains on the mechanical properties of a low-alloyed TRIP steel. Steel Research International 83 (6), pp. 584 - 589 (2012)
Davut, K.; Gür, C. H.: Monitoring the Microstructural Evolution in Spheroidised Steel by Magnetic Barkhausen Noise Measurement. Journal of Nondestructive Evaluation 29, pp. 241 - 247 (2010)
Davut, K.; Zaefferer, S.: Statistical Reliability of Phase Fraction Determination Based on Electron Backscatter Diffraction (EBSD) Investigations on the Example of an Al-TRIP Steel. Metallurgical and Materials Transactions A 41 (9), pp. 2187 - 2196 (2010)
Davut, K.; Zaefferer, S.: The effect of texture on the stability of retained austenite in Al-alloyed TRIP steels of Al-alloyed TRIP Steels. MRS 2010 Fall Meeting, Boston, MA, USA, 2011. (2011)
Davut, K.; Zaefferer, S.: Improving the Reliability of EBSD-based Texture Analysis by a New Large Area Mapping Technique. International Conference on the Textures of Materials, ICOTOM 16, Mumbai, India (2011)
Davut, K.; Zaefferer, S.: Factors influencing the strain-induced transformation of residual austenite in a low-alloyed TRIP steel. Euromat 2011 Conference, Montpellier, France (2011)
Davut, K.; Zaefferer, S.: A new large-area mapping technique to improve the statistical reliability of EBSD datasets. Royal Microscopy Society (RMS) EBSD 2011 Meeting, Düsseldorf, Germany (2011)
Davut, K.; Zaefferer, S.: The effect of texture on the stability of retained austenite in Al-alloyed TRIP steels of Al-alloyed TRIP Steels. MRS 2010 Fall Meeting, Boston, MA, USA (2010)
Davut, K.; Zaefferer, S.: Statistical Reliability of EBSD Data Sets for the Characterization of Al-alloyed TRIP Steels. 15th International Metallurgy and Materials Congress, Istanbul, Turkey (2010)
Davut, K.; Zaefferer, S.: Statistical Reliability of Phase Fraction and Texture Determination Based on EBSD Investigations on the Example of an Al-TRIP steel. Royal Microscopy Society (RMS) EBSD 2010 Meeting, Derby, UK (2010)
Davut, K.; Zaefferer, S.: Phase fraction and texture quantification of Al-TRIP steel from EBSD data. 3rd Int. Conf. On Texture and Anisotropy of Polycrystals (ITAP-3), Göttingen, Germany (2009)
Davut, K.; Gür, C. H.: Monitoring the Microstructural Evolution in Spheroidised Steel by Magnetic Barkhausen Noise Measurement. 7th Int. Conf. on Barkhausen Noise & Micromagnetic Testing, Aachen, Germany (2009)
Davut, K.; Zaefferer, S.: Effect of step size and scanned area on phase fraction and texture quantification from EBSD data. DGM-DVM, EBSD-Workshop 2009, Mikrostrukturuntersuchungen im REM, Chemnitz, Germany (2009)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.