Lyrio, M. S.; Oliveira, H.R.; Sandim, M. J. R.; Devulapalli, V.; Sandim, H. R. Z.: Effect of the scanning strategy on texture of grain-oriented electrical steel (Fe-4wt%Si) processed via laser powder-bed fusion and subsequent thermomechanical processing. Materials Characterization 221, 114789 (2025)
Dhekne, P. P.; Vermeij, T.; Devulapalli, V.; Jadhav, S. D.; Hoefnagels, J. P.M.; Geers, M. G.D.; Vanmeensel, K.: Micro-mechanical deformation behavior of heat-treated laser powder bed fusion processed Ti–6Al–4V. Scripta Materialia 233, 115505 (2023)
Devulapalli, V.; Bishara, H.; Ghidelli, M.; Dehm, G.; Liebscher, C.: Influence of substrates and e-beam evaporation parameters on the microstructure of nanocrystalline and epitaxially grown Ti thin films. Applied Surface Science 562, 150194 (2021)
Dehm, G.; Devulapalli, V.; Schulz, F.; Soares Barreto, E.; Ellendt, N.; Jägle, E. A.: Strengthening of CoCrFe(Mn)Ni high entropy alloys by dislocation pinning: From Lattice friction & SRO to particle strengthening. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2024, Bernkastel-kues, Germany (2024)
Devulapalli, V.; Dehm, G.; Liebscher, C.: Unravelling grain boundary structures in Ti thin films using aberration-corrected transmission electron microscopy. MSE Darmdtadt (Virtual), Darmstadt, Germany (2020)
Devulapalli, V.; Hans, M.; Prithiv, T. S.; Schneider, J. M.; Dehm, G.; Liebscher, C.: Unravelling the atomic structure and segregation of Ʃ13 [0001] tilt grain boundaries in titanium by advanced STEM. Microscopy Conference 2021 & Multinational Conference on Microscopy 2021, Vienna, Austria (2021)
Devulapalli, V.; Frommeyer, L.; Ghidelli, M.; Liebscher, C.; Dehm, G.: From epitaxially grown thin films to grain boundary analysis in Cu and Ti. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano, Düsseldorf, Germany (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…