Schneider, M.; Couzinie, J.-P.; Shalabi, A.; Ibrahimkhel, F.; Ferrari, A.; Koermann, F.; Laplanche, G.: Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys. Scripta Materialia 240, 115844 (2024)
Ferrari, A.; Körmann, F.: Design of compositionally complex catalysts: Role of surface segregation. Journal of Materials Research and Technology 14, pp. 1830 - 1836 (2021)
Neugebauer, J.; Körmann, F.; Ferrari, A.: Navigating and exploiting the high-dimensional configuration spaces of high entropy alloys. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…