Jo, M. C.; Choi, J. H.; Lee, H.; Zargaran, A.; Ryu, J.; Sohn, S. S.; Kim, N. J.; Lee, S.: Effects of solute segregation on tensile properties and serration behavior in ultra-high-strength high-Mn TRIP steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 740-741, pp. 16 - 27 (2019)
Jo, M. C.; Lee, H.; Zargaran, A.; Ryu, J.; Sohn, S. S.; Kim, N. J.; Lee, S.: Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 737, pp. 69 - 76 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…