Sasidhar, K. N.; Meka, S. R.: Thermodynamic reasoning for colossal N supersaturation in austenitic and ferritic stainless steels during low-temperature nitridation. Scientific Reports 9 (1), 7996 (2019)
Akhlaghi, M.; Meka, S. R.; Jägle, E. A.; Kurz, S.; Bischoff, E.; Mittemeijer, E. J.: Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe–Cr–Al Alloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 47 (9), pp. 4578 - 4593 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.