Lai, M.; Li, T.; Yan, F.; Li, J.; Raabe, D.: Revisiting o phase embrittlement in metastable b titanium alloys: Role of elemental partitioning. Scripta Materialia 193, pp. 38 - 42 (2021)
Lai, M.; Li, Y.; Lillpopp, L.; Ponge, D.; Will, S.; Raabe, D.: On the origin of the improvement of shape memory effect by precipitating VC in Fe–Mn–Si-based shape memory alloys. Acta Materialia 155, pp. 222 - 235 (2018)
Lai, M.; Li, T.; Raabe, D.: ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy. Acta Materialia 151, pp. 67 - 77 (2018)
Zhang, J.; Tasan, C. C.; Lai, M.; Yan, D.; Raabe, D.: Partial recrystallization of gum metal to achieve enhanced strength and ductility. Acta Materialia 135, pp. 400 - 410 (2017)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage resistance in gum metal through cold work-induced microstructural heterogeneity. Journal of Materials Science 50 (17), pp. 5694 - 5708 (2015)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage Resistance through Hierarchical Microstructure Development on GUM Metal. Materials Science and Engineering (MSE2014), Darmstadt, Germany (2014)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Zhang, J.; Raabe, D.; Lai, M.; Yan, D.; Tasan, C. C.: Site-preferential recrystallization and nano-precipitation to achieve improved mechanical properties. MRS Fall Meeting 2016, Boston, MA, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…