Zheng, C.; Raabe, D.: Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model. Acta Materialia 61 (14), pp. 5504 - 5517 (2013)
Zheng, C.; Raabe, D.; Li, D.: Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Materialia 60, pp. 4768 - 4779 (2012)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.