Ostwald, C.; Grabke, H. J.: Initial Oxidation and Chromium Diffusion. I. Effects of Surface Working on 9-20% Cr Steels. Corrosion Science 46 (5), pp. 1113 - 1127 (2004)
Grabke, H. J.; Spiegel, M.; Zahs, A.: Role of Alloying Elements and Carbides in the Chlorine-induced Corrosion of Steels and Alloys. Materials Research 7 (1), pp. 89 - 95 (2004)
Grabke, H.-J.; Tôkei, Z. S.; Ostwald, C.: Initial Oxidation of a 9 % CrMo- and a 12 % CrMoV – Steel. Steel Research International 75 (1), pp. 38 - 46 (2004)
Grabke, H. J.; Müller-Lorenz, E. M.; Zinke, M.: Metal Dusting Behaviour of Welded Ni-Base Alloys with Different Surface Finish. Material and Corrosion 54, pp. 785 - 792 (2003)
Pippel, E.; Woltersdorf, J.; Grabke, H. J.: Microprocesses of Metal Dusting on Iron - Nickel Alloys and their Dependence on Composition. Material and Corrosion 54 (10), pp. 747 - 751 (2003)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Materials at High Temperatures 20, 2, pp. 153 - 159 (2003)
Moszynski, D.; Grabke, H. J.; Schneider, A.: Effect of sulphur on the formation of graphite at the surface of carburized iron. Surface and Interface Analysis 34, pp. 380 - 383 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.