Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. MPIE-ICAMS workshop, Ebernburg, Germany (2017)
Grabowski, B.: Data driven engineering of advanced materials: Combining high precision and scale bridging. Colloquium at Forschungszentrum Jülich, Jülich, Germany (2017)
Grabowski, B.: Development and application of quantum mechanics based simulation tools for the design of modern metallic materials. Seminar at RWTH Aachen, Aachen, Germany (2017)
Grabowski, B.: Discovery of an ordered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar at University of Münster, Münster, Germany (2016)
Grabowski, B.: Discovery of an orderered hexagonal superstructure in an Al–Hf–Sc–Ti–Zr high entropy alloy. Seminar, Universität Münster, Münster, Germany (2016)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Development of methodologies to efficiently compute melting properties fully from ab initio. 2nd German-Dutch Workshop on Computational Materials Science, Domburg, The Netherlands (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at University Paderborn, Paderborn, Germany (2016)
Grabowski, B.: Entwicklung von quantenmechanischen Simulationsmethoden für das Design moderner metallischer Werkstoffe. Seminar at Universität Paderborn, Paderborn, Germany (2016)
Körmann, F.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Lattice excitations in magnetic alloys: Recent advances in ab initio modeling of coupled spin and atomic fluctuations. TMS Annual Meeting 2016, Nashville, TN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…