Bueno Villoro, R.: Electron microscopy investigations to understand the transport properties of energy materials. Physics Department, Technical University of Denmark, Kongens Lyngby, Denmark (2023)
Bueno Villoro, R.: Effect of grain boundary phases on the properties of half Heusler thermoelectrics. Northwestern University, Evanston, IL, USA (2023)
Bueno Villoro, R.: Application of NbTiFeSb half Heusler thermoelectric materials. Colloquium, Leibniz-Institut für Festkörper- und Werkstoffforschung, Dresden, Germany (2022)
Mattlat, D. A.; Bueno Villoro, R.; Jung, C.; Scheu, C.; Zhang, S.; Naderloo, R. H.; Nielsch, K.; He, .; Zavanelli, D.; Snyder, G. J.: Effective doping of InSbat the grain boundaries in Nb1-xTixFeSb based Half-Heusler thermoelectricsfor high electrical conductivity and Seebeckcoefficient. 40th International & 20th European Conference on Thermoelectrics, Krakow, Poland (accepted)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Microscopy of semiconducting materials conference, Cambridge, UK (2023)
Bueno Villoro, R.; Luo, T.; Bishara, H.; Abdellaoui, L.; Gault, B.; Wood, M.; Snyder, G. J.; Scheu, C.; Zhang, S.: Effect of grain boundaries on electrical conductivity in Ti(Co,Fe)Sb half Heusler thermoelectrics. 719. WE-Heraeus-Seminar, Understanding Transport Processes on the Nanoscale for Energy Harvesting Devices, online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…