Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Zhu, L.-F.; Sha, G.; Ringer, S.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high resolution experiments to improve the understanding of advanced Mg-Y and Mg-RE alloys. 7th Annual Conference of the ARC Centre of Excellence for Design in Light Metals, Melbourne, VIC, Australia (2012)
Konijnenberg, P. J.; Zaefferer, S.; Raabe, D.: Advanced analysis of 3D EBSD data obtained by FIB tomography. NVvM 2012 Materials Science Meeting, Eindhoven, The Netherlands (2012)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: In-situ investigations of small strain plasticity in dual-phase steel. 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing, China (2012)
Zaefferer, S.; Chen, J.; Konijnenberg, P.: A study on origin and nature of shear bands in cold rolled Mg-3Y alloy using 3D EBSD. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada (2012)
Zaefferer, S.: An overview on techniques for the measurements of plastic and elastic strain by EBSD and related techniques. EBSD usermeeting der DGK, Hannover, Germany (2012)
Zaefferer, S.: Advanced applications of SEM-based electron diffraction techniques for the characterization of deformation structures of new steels. E-MRS 2012, Strasbourg, France, Strasbourg, France (2012)
Zaefferer, S.: Dislocations in metals: Observations from the atomic scale to macroscopic dimensions. ICMS Workshop, “Open problems between micro and macro systems of agents and particles”, Eindhoven, The Netherlands (2012)
Ram, F.; Zaefferer, S.: Kikuchi Bandlet Method: A Method to Resolve the Source Point Position of an EBSD Pattern. 20th Annual meeting of the German Crystallographic Society, München, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…