Al-Sawalmih, A.; Romano, P.; Sachs, C.; Raabe, D.: Structure and texture analysis of chitin-bio-nanocomposites using synchrotron radiation. MRS Spring Meeting, San Francisco, CA, USA (2005)
Romano, P.; Al-Sawalmih, A.; Sachs, C.; Raabe, D.; Brokmeier, H. G.: Mesostructure, microstructure and anisotropy of the lobster cuticle. MRS Spring Meeting, San Francisco, CA, USA (2005)
Romano, P.; Raabe, D.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Influence of sample preparation and anisotropy on lobster claw studied by LOM, SEM and TEM. Focus on Microscopy, Jena, Germany (2005)
Zaafarani, N.; Singh, R.; Zaefferer, S.; Roters, F.; Raabe, D.: 3D experimental investigation and crystal plasticity FEM simulation of the texture and microstructure below a nanoindent in a Cu-single crystal. 6th European Symposium on nano-mechanical Testing (Nanomech 6), Hückelhoven, Germany (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Deformation Behavior of a Fe3Al Alloy During Thermomechanical Treatment. MRS Fall Meeting, Boston, MA, USA (2004)
Thomas, I.; Zaefferer, S.; Friedel, F.; Raabe, D.: Orientation dependent growth behaviour of subgrain structures in IF steel. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE, Düsseldorf, Germany (2004)
Roters, F.; Zhao, Z.; Raabe, D.: Development of a Grain Fragmentation Criterion and its Validation using Crystal Plasticity FEM Simulations. Meeting, Düsseldorf, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.