Cantergiani, E.; Riedel, M.; Karhausen, K. F.; Roters, F.; Quadfasel, A.; Falkinger, G.; Engler, O.; Rabindran, R.: Simulations of Texture Evolution in the Near-Surface Region During Aluminum Rolling. Metallurgical and Materials Transactions A 55 (9.0), pp. 3327 - 3350 (2024)
Cantergiani, E.; Weißensteiner, I.; Grasserbauer, J.; Falkinger, G.; Pogatscher, S.; Roters, F.: Influence of Hot Band Annealing on Cold-Rolled Microstructure and Recrystallization in AA 6016. Metallurgical and Materials Transactions A 54, pp. 75 - 96 (2023)
Cantergiani, E.; Falkinger, G.; Roters, F.: Crystal plasticity simulations of Cube in-grain fragmentation in aluminium: Influence of crystal neighbor orientation. International Journal of Solids and Structures 252, 111801 (2022)
Cantergiani, E.; Falkinger, G.; Mitsche, S.; Theissing, M.; Klitschke, S.; Roters, F.: Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloys. Metallurgical and Materials Transactions A 53, pp. 2832 - 2860 (2022)
Kasemer, M.; Falkinger, G.; Roters, F.: A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet. Modelling and Simulation in Materials Science and Engineering 28 (8), 085005 (2020)
Cantergiani, E.; Theissing, M.; Falkinger, G.; Mitsche, S.; Roters, F.: Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloys. International Conference on Strength of Materials (ICSMA) 2022, Metz, France (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.