Tung, P.-Y.; McEniry, E.; Herbig, M.: The role of electric current in the formation of white-etching-cracks. Philosophical Magazine 101 (1), pp. 59 - 76 (2021)
Srikakulapu, K.; Morsdorf, L.; Tung, P.-Y.; Prithiv, T. S.; Herbig, M.: Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness. European Congress and Exhibition on Advanced Materials and Processes, EUROMAT 2021, online (2021)
Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…