Bambach, M.; Heppner, S.; Steinmetz, D.; Roters, F.: Assessing and ensuring parameter identifiability for a physically-based strain hardening model for twinning-induced plasticity. Mechanics of Materials 84, pp. 127 - 139 (2015)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. MSE 2014
, Darmstadt, Germany (2014)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. 2nd International Conference High Manganese Steel, HMnS 2014
, Aachen, Germany (2014)
Steinmetz, D.; Roters, F.; Eisenlohr, P.; Raabe, D.: A dislocation density-based constitutive model for TWIP steels. 1st International Conference on High Manganese Steels, Seoul, South Korea (2011)
Steinmetz, D.; Zaefferer, S.: Currents state of the art in EBSD: Possibilities and limitations. Seminar Talk at Ludwig-Maximilians-Universität, München, Germany (2011)
Steinmetz, D.; Zaefferer, S.: Improving the physical resolution of electron backscatter diffraction by decreasing accelerating voltage. EBSD 2010 Meeting, Rolls-Royce Leisure Association, Derby, UK (2010)
Steinmetz, D.; Zaefferer, S.: Quantitative determination of twin volume fraction in TWIP steels by high resolution EBSD. Materials Science and Technology (MS&T) 2010, Pittsburgh, PA, USA (2009)
Steinmetz, D.; Zaefferer, S.: Challenges of low-accelerating voltage electron backscatter diffraction. 3rd International Conference on Texture and Anisotropy of Polycrystals (ITAP-3), Göttingen, Germany (2009)
Steinmetz, D.; Zaefferer, S.: Towards ultrahigh resolution EBSD by use of low accelerating voltage. EBSD 2009 Meeting, University of Swansea, Wales, UK (2009)
Steinmetz, D.: A constitutive model of twin nucleation and deformation twinning in High-Manganese Austenitic TWIP steels. Dissertation, RWTH Aachen, Aachen, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…