Fischer, F. D.; Cha, L.; Dehm, G.; Clemens, H. J.: Can local hot spots induce α2/γ lamellae during incomplete massive transformation of γ-TiAl alloys? Intermetallics 18 (5), pp. 972 - 976 (2010)
Fischer , F. D.; Waitz, T.; Scheu, C.; Cha, L.; Dehm, G.: Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics 18 (4), pp. 509 - 517 (2010)
Matoy, K.; Detzel, T.; Müller , M.; Motz, C.; Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surface and Coatings Technology 204 (6-7), pp. 878 - 881 (2009)
Dehm, G.: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Progress in Materials Science 54 (6), pp. 664 - 688 (2009)
Oh, S. H.; Legros, M.; Kiener, D.; Dehm, G.: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Materials 8 (2), pp. 95 - 100 (2009)
Kiener, D.; Motz, C.; Dehm, G.; Pippan, R.: Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEM. International Journal of Materials Research 100 (8), pp. 1074 - 1087 (2009)
Yang, B.; Motz, C.; Grosinger, W.; Kammrath, W.; Dehm, G.: Tensile behaviour of micro-sized copper wires studied by a novel fibre tensile module. International Journal of Materials Research 99 (7), pp. 716 - 724 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…