Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. CNRS GDRi mecano: General Meeting
, Marseille, France (2015)
Davydok, A.; Jaya, B. N.; Micha, J.-S.; Kirchlechner, C.: Can We Analyze the Full Strain Tensor During a micro-Compression Experiment? A µLaue case study on Germanium. Size & Strain
, Oxford, UK (2015)
Molin, J.-B.; Renversade, L.; Micha, J. S.; Ulrich, O.; Kirchlechner, C.: 3D-Laue Micro Diffraction to Characterize Fatigue Damage in Bi-crystalline Micro Cantilevers. ECI Nanomechanical Testing in Materials Research and Development VII (ECI2019), Malaga, Spain (2019)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation slip transfer at Cu grain boundaries analyzed by µLaue diffraction. Gordon Research Seminar Thin Film & Small Scale Mechanical Behavior, Lewiston, ME, USA (2016)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation slip transfer at Cu grain boundaries analyzed by µLaue diffraction. Gordon Research Conference Thin Film & Small Scale Mechanical Behavior, Best Poster Prize, Lewiston, ME, USA (2016)
Malyar, N.; Jaya, B. N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Orientation dependence of dislocation transmission through twin-boundaries studied by in situ μLaue diffraction. ECI - Nano- and Micromechanical Testing in Materials Research and Development V, Albufeira, Portugal (2015)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.