Roters, F.; do Nascimento, A. W. P.; Roongta, S.; Diehl, M.: An optimized method for the simulation-based determination of initial parameters of advanced yield surfaces for sheet metal forming applications. Complas 2021, online (2021)
Raabe, D.; Diehl, M.; Shanthraj, P.; Sedighiani, K.; Roters, F.: Multi-scale and multi-physics simulations of chemo-mechanical crystal plasticity problems for complex engineering materials using DAMASK. Online Colloquium Lecture, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden (2020)
Roters, F.; Diehl, M.; Sedighiani, K.: (Re-) formulation of dislocation density based crystal plasticity models in view of insights from parameter determination. Oberwolfach Workshop: Mechanics of Materials: Towards Predictive Methods for Kinetics in Plasticity, Fracture, and Damage, Oberwolfach, Germany (2020)
Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Bos, K.; Sietsma, J.; Raabe, D.: A Coupled Crystal Plasticity – Cellular Automaton Method for 3D Modeling of Recrystallization: Part I: Crystal Plasticity. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Diehl, M.; Kusampudi, N.; Kusche, C.; Raabe, D.; Korte-Kerzel, S.: Combining Experiments, Simulations, and Data Science to Understand Damage in Dual Phase Steels. International Conference on Plasticity, Damage, and Fracture, Riviera May, Mexico (2020)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: Understanding the Plastic Behavior of Tungsten From First Principles to Crystal Plasticity. International Mechanical Engineering Congress & Exposition (IMECE) 2019, Salt Lake City, UT, USA (2019)
Diehl, M.; Kühbach, M.; Kertsch, L.; Traka, K.; Raabe, D.: Coupled Experimental–Computational Analysis of Primary Static Recrystallization in Low Carbon Steel. Seminar of the Department of Mechanical Science and Engineering of the University of Illinois, Urbana-Champaign, Il, USA (2019)
Sedighiani, K.; Traka, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Determination and validation of BCC crystal plasticity parameters for a wide range of temperatures and strain rates. 7th Conference on Recrystallization and Grain Growth, REX 2019, Ghent, Belgium (2019)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites for Recrystallization using Crystal Plasticity Simulations. 7th International Conference on Recrystallization and Grain Growth, Ghent, Belgium (2019)
Diehl, M.; Roters, F.; Raabe, D.: Coupled Experimental-Computational Investigations of Grain Scale Mechanics in Complex Metallic Microstructures. 15th U.S. National Congress on Computational Mechanics, Ausrin, TX, USA (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.