Rohwerder, M.; Schilz, C. M.; Unger, M.; Grundmeier, G.: Versagen von Beschichtungssystemen auf Metallen aufgrund von korrosiver Belastung. GUS Diskussionstage "Feuchtklimasicherheit elektronischer Schaltungen", Gesellschaft für Umweltsimulation e.V. (GUS), München, Germany (1998)
Rohwerder, M.: Einsatz der Rastersondenmikroskopie in der Korrosionsforschung - Neue Ansätze bei der Optimierung von Beschichtungsmethoden. DI-Workshop "Einsatz neuer Mikroskopietechniken in der Metallindustrie", Saarbrücken, Germany (1998)
Rohwerder, M.: Zum Einfluß des Elektrodenpotentials auf die Selbstorganisation von Thiolen auf Gold. Seminar, Max-Planck-Institute for Polymer research (Prof. Knoll), Mainz, Germany (1997)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: On the influence of the electrode potential on growth and stability of thiol monolayer films: Scanning tunneling microscopic and electrochemical investigations. 3rd Indo-German Symposium on modern methods in electrochemistry, Bangalore, India (1996)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: Zum Einfluß des Elektrodenpotentials auf Wachstum und Zerstörung von Thiolfilmen. Bunsentagung, Jena, Germany (1996)
Rohwerder, M.: Organic monolayers as adhesive agents for organic coatings in corrosion protection. Seminar at Dep. Of Chemistry (Prof. R. Crooks), Texas A&M Univ., College Station, TX, USA (1995)
Rohwerder, M.; de Weldige, K.; Stratmann, M.: The influence of the electrode potential on the self-assembly of decanethiol on the Au(111) surface. 188th Meeting of the ECS, Chicago, IL, USA (1995)
Rohwerder, M.; de Weldige, K.; Viefhaus, H.; Stratmann, M.: Adsorption selbst-organisierter Mercaptan-Monolagen auf Gold. Workshop on Development and Industrial Application of Scanning Probe Microscopes SXM1, Münster, Germany (1994)
Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: Role of Trigger Signal Spreading Velocity on Self-healing Capability of Intelligent Coatings for Corrosion Protection. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2019)
Uebel, M.; Shkirskiy, V.; Maltseva, A.; Lefèvre, G.; Volovitch, P.; Rohwerder, M.: New Insights on the Mechanism of Cathodic Driven Coating Delamination: Suppressed Cation Migration along Zn/Polymer Interface in CO2 Containing Atmosphere. Gordon Research Conferences 2018, New London, NH, USA (2018)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Conferences 2016, New London, NH, USA (2016)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Seminars 2016, New London, NH, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings with full-scale self-healing ability on zinc and galvanized steel. Gordon Research Conferences 2016, New London, NH, USA (2016)
Uebel, M.; Rohwerder, M.: Conducting polymer based anticorrosion composite coatings with full-scale self-healing ability on zinc and galvanized steel. Gordon Research Seminars 2016, New London, NH, USA (2016)
Pang, B.; Stratmann, M.; Vogel, D.; Erbe, A.; Rohwerder, M.: Characterization of electrochemical double layer formed on Au (111) electrode: a KPM, FTIR and APXPS investigation. 2nd Annual APXPS Workshop, Berkeley, CA, USA (2015)
Vogel, D.; Vogel, A.; Rohwerder, M.: The investigation of the internal oxidation during short-term annealing in binary and ternary alloys. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2015)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…