Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: The deceit of steel strength ductility diagrams: A case study on high manganese lightweight steel. 7th International Conference of Engineering Against Failure ICEAF 2023, Spetses, Greece (2023)
Elkot, M.; Sun, B.; Zhou, X.; Ponge, D.; Raabe, D.: Grain boundary κ-carbides in high manganese lightweight steel: degradation assessment and potential solutions. 5th International High Manganese Steel Conference 2022, online, Linz, Austria (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of deformation twinning and dislocation slip interaction in hexagonal materials. 18th European Mechanics of Materials Conference, online, Oxford, UK (2022)
Ma, Y.; Villanova, J.; Requena, G.; Raabe, D.: Understanding the physical-chemical phenomena in green steel production using synchrotron X-ray techniques. European Synchrotron Radiation Facility User Meeting 2022, Online (2022)
Liu, C.; Roters, F.; Raabe, D.: Finite strain crystal plasticity-phase field modeling of twin, dislocation, and grain boundary interactions. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Liu, C.; Shanthraj, P.; Davis, A.; Fellowes, J.; Prangnell, P.; Raabe, D.: Chemo-mechanical phase-field model for two-sublattice phases: phase precipitation in Al–Zn–Mg–Cu alloys. 19th International Conference on Strength of Materials ICSMA, Metz, France (2022)
Raabe, D.: The Science of dirty alloys: recycling-based Aluminium for a circular economyle. The 4th International Conference on Light Materials - Science and Technology, Opening Plenary Lecture (delivered online) (2021)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks and missing C atoms – chasing the mysteries of white etching areas in bearings. 2nd meeting of "Metallurgical Metallurgy for Plasticity-driven Damage and Fracture" research forum 2021 (ISIJ), virtual (2021)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.