Krüger, T.: Hybrid LB-FEM modeling of dense suspensions of deformable particles under shear. SFB TR6 Seminar, Institut für Theoretische Physik II, HHU Düsseldorf, Germany (2011)
Krüger, T.: Mesoscopic modeling of red blood cell dynamics. Oberseminar: Theorie komplexer Systeme WS 2010, Institut für Theoretische Physik, Universität Heidelberg, Germany (2010)
Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive broadening in pressure driven microchannels: A lattice Boltzmann study of the scaling laws. The XVth International Congress on Rheology, Monterey, CA. USA (2008)
Varnik, F.; Raabe, D.: Finite size driven droplet evaporation and kinetics of droplets: A lattice Boltzmann study. Sommer Workshop on Nano-& Microfluidics, Bad-Honnef, Germany (2008)
Varnik, F.: Some micro- and nanofluidic issues using a free energy based lattice Boltzmann approach: Finite size driven droplet evaporation and wetting dynamics on chemical gradients. Seminar at MPI für Metallforschung, Stuttgart, Germany (2008)
Varnik, F.: Stability and kinetics of droplets. The 5th International Conference for Mesoscopic Methods in Engineering, Amsterdam, The Netherlands (2008)
Varnik, F.: Flows driven by wettability gradients: A lattice Boltzmann study. DPG Spring Meeting of the Condensed Matter Division, Berlin, Germany (2008)
Varnik, F.: Lattice Boltzmann studies of non-ideal fluids: Droplet coalescence and wetting gradientinduced motion. Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany (2007)
Varnik, F.: Lattice-Boltzmann simulations of multi-phase and multi-component systems. Max-Planck Workshop Multiscale Materials Modelling, Sant Feliu de Guixols, Spain (2007)
Varnik, F.: Discussion meeting on Lattice Boltzmann modeling and simulation of multicomponent and multiphase flows. Seminar Talk at TU-Braunschweig, Braunschweig, Germany (2007)
Varnik, F.: Diffusion, structural relaxation and rheological properties of a simple glass forming model: A molecular dynamics study. The 5th International Workshop on Complex Systems, Sendai, Japan (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.