Zambaldi, C.; Zaefferer, S.; Wright, S. I.: Determination of texture and microstructure of ordering domains in gamma-TiAl. Electron Backscatter Diffraction Meeting by the Royal Microscopical Society, University of Sheffield, Sheffield, UK (2008)
Zaefferer, S.; Romano, P.: Attempt to identify and quantify microstructural constituents in low-alloyed TRIP steels by simultaneous EBSD and EDS measurements. M&M 2007, Microscopy and Microanalysis 2007 Meeting, Ft. Lauderdale, FL, USA (2007)
Frommert, M.; Dorner, D.; Lahn, L.; Raabe, D.; Zaefferer, S.: 3D Investigation of Early Stages of Recrystallization in Deformed Goss-Oriented Fe3%Si Single Crystals. The Third International Conference on Recrystallization and Grain Growth ReX & GG III, Jeju Island, South Korea (2007)
Zaefferer, S.: Some ideas on the formation mechanisms and intensity of electron backscatter diffraction patterns. 14th Conference on Electron Backscatter Diffraction, New Lanark, Scotland, UK (2007)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3 Dimensional EBSD study of the relationship between triple junctions and columnar grain in electrodeposited materials. Electron Back Scatter Diffraction Meeting 2007, New Lanark, Scotland, UK (2007)
Bastos da Silva, A. F.; Zaefferer, S.; Raabe, D.: Three Dimension Characterization of Electrodeposited Samples. MRS Fall Meeting, Boston, MA, USA (2005)
Dorner, D.; Zaefferer, S.: 3D reconstruction of an abnormally growing Goss grain in Fe3%Si by FIB serial sectioning and EBSD. DPG-Jahrestagung 2005, Berlin, Germany (2005)
Zaafarani, N.; Singh, R.; Zaefferer, S.; Roters, F.; Raabe, D.: 3D experimental investigation and crystal plasticity FEM simulation of the texture and microstructure below a nanoindent in a Cu-single crystal. 6th European Symposium on nano-mechanical Testing (Nanomech 6), Hückelhoven, Germany (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Deformation Behavior of a Fe3Al Alloy During Thermomechanical Treatment. MRS Fall Meeting, Boston, MA, USA (2004)
Thomas, I.; Zaefferer, S.; Friedel, F.; Raabe, D.: Orientation dependent growth behaviour of subgrain structures in IF steel. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE, Düsseldorf, Germany (2004)
Wöllmer, S.; Zaefferer, S.; Göken, M.; Mack, T.; Glatzel, U.: Characterization of phases of aluminized nickel base superalloys. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…