Hassel, A. W.; Bonk, S.; Wicinski, M.; Stratmann, M.; Ogle, K.; Philips-Falcey, N.; Ostwald, C.; Janssen, S.; Stellnberger, K.-H.; Konrath, P.: Passive/active transistions in cyclic corrosion tests. Office for Official Publications of the European Communities, Luxembourg, Luxembourg (2007)
Bard, A. J.; Stratmann, M. (Eds.): Encyclopedia of Electrochemistry, Vol. 6: Semiconductor electrodes and Photoelectrochemistry. Wiley-VCH, Weinheim, Germany (2002), 597 pp.
Rohwerder, M.; Grundmeier, G.; Stratmann, M.: Corrosion Prevention by Adsorbed Organic Monolayers and Ultrathin Plasma Polymer Films. In: Corrosion Mechanisms in Theory and Practice, Third Edition, Vol. 14, pp. 617 - 668 (Ed. Marcus, P.). CRC Press, Boca Raton, FL, USA (2012)
Rohwerder, M.; Frankel, G. S.; Leblanc, P.; Stratmann, M.: Application of scanning Kelvin probe in corrosion science. In: Methods for Corrosion Science and Engineering, pp. 605 - 648 (Eds. Marcus, P.; Mansfeld , F.). Marcel Dekker, New York, USA (2006)
Stratmann, M.; Vogel, D.; Rohwerder, M.; Steinbeck, G.; Ogle, K.; Wolpers, M.; de Boeck, A.; Wormuth, R.; Rehnisch, O.; Reier, T.: Investigations of the delamination of polymer-coated zink and steel surfaces with the scanning Kelvin probe in a climatic cycle test. In: In: Technical Steel Research, EUR 20348 EN, pp. 1 - 198 (Ed. Steel Research). Steel Research, Brussels, Belgium (2002)
Stratmann, M.; Fürbeth, W.; Grundmeier, G.; Lösch, R.; Reinartz, C.: Corrosion Inhibition by Adsorbed Organic Monolayers. In: Corrosion Mechanisms in Theory and Practice, Chapter 11 (Eds. Marcus, P.; Oudar, J.). M. Dekker, New York, USA (1995)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Investigation of Erosion - Corrosion Phenomena with the Help of Single Impact Impingement Studies. In: Japan Society for Corrosion Engineering Materials and Environments. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan, May 09, 2007 - May 11, 2007. (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.