Scheu, C.: Designing the functional properties of thermoelectric materials by grain boundary engineering. Workshop on New Horizons in Materials Design, MPIE, Düsseldorf, Germany (2023)
Vega-Paredes, M.; Arenas Esteban, D.; Garzón-Manjón, A.; Scheu, C.: How can electron tomography be used for studying the catalyst degradation of fuel cells. Advanced Electron Nanoscopy Group – Institut Catala de Nanociencia I Nanotecnologia, Bellaterra, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Linnemann, J.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Electron microscopy insights on the mechanism of morphology/phase transformations in manganese oxides. Institut de Nanociència i Nanotecnologia (ICN2), Bellaterra, Spain (2022)
Scheu, C.: Unravelling secrets of interfaces in renewable energy application. 10th International Workshop on Interfaces, Santiago de Compostela, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Mechanism of coupled phase/morphology transformation of 2D manganese oxides through Fe galvanic exchange reaction. Chemistry Department Seminar, Kangwon National University, Chuncheon, South Korea (2022)
Scheu, C.: Insight in the structure and stability of (photo)catalysts. Graduiertenkollegs GRK1896 „In situ microsopy with electrons, X-rays and scanning probes: Abschlusssymposium, Erlangen, Germany (2022)
Scheu, C.: Tracing impurities and structural defects in energy materials using advanced scanning transmission electron microscopy and atom probe tomography. Retreat Lotsch Group, Schloss Fürstenried, München, Germany (2022)
Vega-Paredes, M.; Garzón-Manjón, A.; Rivas Rivas, N. A.; Berova, V.; Hengge, K. A.; Gänsler, T.; Jurinsky, T.; Scheu, C.: Ruthenium-Platinum Core-Shell Nanoparticles as durable, CO tolerant catalyst for Polymer Electrolyte Membrane Fuel Cells. 5th International Caparica Symposium on Nanoparticles/Nanomaterials and Applications (ISN2A), Online (accepted)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.