Herrera, C.; Ponge, D.; Raabe, D.: Microstructural evolution during hot working of 1.4362 duplex stainless steel. 2nd International Symposium on Steel Science (ISSS 2009), Kyoto, Japan (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Experimental study on orientation gradients and GNDs in ultrafine grained dual-phase steels. International Conference on Processing & Manufacturing of Advanced Materials (THERMEC 2009), Berlin, Germany (2009)
Nnamchi, P.; Ponge, D.; Raabe, D.; Barani, A.; Bruckner, G.; Krautschik, J.: Influence of the As-Cast Microstructure on the Evolution of the Hot Rolling Textures of Ferritic Stainless Steels with Different Compositions. 15th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Large Strain Warm Deformation and Subsequent Intercritical Annealing. ISUGS 2007 (International Symposium on Ultrafine Grained Steels), Kitakyushu, Japan (2007)
Ardehali Barani, A.; Ponge, D.; Kaspar, R.: Improvement of Mechanical Properties of Spring Steels through Application of Thermomechanical Treatment. Steels for Cars and Trucks, Wiesbaden, Germany (2005)
Ardehali Barani, A.; Ponge, D.: Morphology of Martensite Formed From Recrystallized or Work-Hardened Austenite. Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, USA (2005)
Ardehali Barani, A.; Ponge, D.: Effect of Austenite Deformation on the Precipitation Behaviour of Si–Cr spring Steels During Tempering. Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, USA (2005)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Microstructure control and mechanical properties of ultrafine grained dual phase steels. Lecture: Osaka University, Osaka [Japan], December 24, 2008
Ponge, D.: Warmumformbarkeit von Stahl. Lecture: Kontaktstudium Werkstofftechnik Stahl, Teil III, Technologische Eigenschaften, Werkstoffausschuss im Stahlinstitut VDEh, Technische Universität Dortmund, June 22, 2008
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of ultrafine grained dual phase steels. Lecture: National Institute for Materials Science (NIMS), Tsukuba, Japan, October 22, 2007
Storojeva, L.; Ponge, D.; Raabe, D.: Halbwarmwalzen als ein neues Produktionskonzept für Kohlenstoffstähle. Lecture: Max-Planck Hot Forming Conference, MPI für Eisenforschung GmbH, Düsseldorf, Germany, December 05, 2002
Sam, H. C.: Role of microstructure and environment on delayed fracture in a novel lightweight medium manganese steel. Master, Augsburg University (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
In 2020, an interdepartmental software task force (STF) was formed to serve as a forum for discussion on topics related to software development and digital workflows at the MPIE. A central goal was to facilitate interdepartmental collaboration by co-developing and integrating workflows, aligning internally developed software, and rolling out…
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
The balance between different contributions to the high-temperature heat capacity of materials can hardly be assessed experimentally. In this study, we develop computationally highly efficient ab initio methods which allow us to gain insight into the relevant physical mechanisms. Some of the results have lead to breakdown of the common…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.