Mukhopadhyay, S.; Pandey, P.; Baler, N.; Biswas, K.; Makineni, S. K.; Chattopadhyay, K.: The role of Ti addition on the evolution and stability of γ/γ′ microstructure in a Co–30Ni–10Al–5Mo–2Ta alloy. Acta Materialia 208, 116736 (2021)
He, J.; Wu, X.; Guo, Y.; Makineni, S. K.: On the compositional and structural redistribution during partial recrystallisation: a case of σ-phase precipitation in a Mo-doped NiCoCr medium-entropy alloy. Scripta Materialia 194, 113662 (2021)
He, J.; Cao, L.; Makineni, S. K.; Gault, B.; Eggeler, G. F.: Effect of interface dislocations on mass flow during high temperature and low stress creep of single crystal Ni-base superalloys. Scripta Materialia 191, pp. 23 - 28 (2021)
Im, H. J.; Makineni, S. K.; Oh, C.-S.; Gault, B.; Choi, P.-P.: Elemental Sub-Lattice Occupation and Microstructural Evolution in γ/γ′ Co–12Ti–4Mo–Cr Alloys. Microscopy and Microanalysis; First View, pp. 1 - 5 (2021)
Pandey, P.; Mukhopadhyay, S.; Srivastava, C.; Makineni, S. K.; Chattopadhyay, K.: Development of new γ′-strengthened Co-based superalloys with low mass density, high solvus temperature and high temperature strength. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 790, 139578 (2020)
Baler, N.; Pandey, P.; Palanisamy, D.; Makineni, S. K.; Phanikumar, G.; Chattopadhyay, K.: On the effect of W addition on microstructural evolution and gamma' precipitate coarsening in a Co–30Ni–10Al–5Mo–2Ta–2Ti alloy. Materialia 10, 100632 (2020)
Kumar, A.; Dutta, A.; Makineni, S. K.; Herbig, M.; Petrov, R.; Sietsma, J.: In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 757, pp. 107 - 116 (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.