Shi, H.; Nandy, S.; Cheng, H.; Sun, B.; Ponge, D.: In-situ investigation of the interaction between hydrogen and stacking faults in a bulk austenitic steel. Acta Materialia 262, 119441 (2024)
Bhattacharya, A.; Barik, R. K.; Nandy, S.; Sen, M.; Prithiv, T. S.; Patra, S.; Mitra, R.; Chakrabarti, D.; Ghosh, A.: Effect of martensite twins on local scale cleavage crack propagation in a medium carbon armor grade steel. Materialia 30, 101800 (2023)
Nandy, S.; Tsai, S.-P.; Stephenson, L.; Raabe, D.; Zaefferer, S.: The role of Ca, Al and Zn on room temperature ductility and grain boundary cohesion of magnesium. Journal of Magnesium and Alloys 9 (5), pp. 1521 - 1536 (2021)
Sekhar, A. P.; Nandy, S.; Ray, K. K.; Das, D.: Prediction of Aging Kinetics and Yield Strength of 6063 Alloy. Journal of Materials Engineering and Performance 28 (5), pp. 2764 - 2778 (2019)
Sekhar, A.P.; Nandy, S.; Dey, S.; Datta, S.; Das, D.: Multi-Objective Genetic Algorithm Based Optimization of Age Hardening for AA6063 Alloy. Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distributionof this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Published under licence by IOP Publishing Ltd3rd International Conference on Advances in Mechanical Engineering (ICAME 2020). IOP Conf. Series: Materials Science and Engineering 912, 052019, (2020)
Kini, M. K.; Nandy, S.; Best, J. P.; Dehm, G.: Deformation of CoCrFeNi alloy thin films under thermal fatigue. International Conference on Creep and Fracture of Engineering Materials and Structures CREEP 2024, Bangalore, India (2024)
Nandy, S.; Zaefferer, S.: On the role of Ca, Zn and Al for ductilization of Mg alloys. 27th International Conference on Materials and Technology (27 ICM&T), Portoroz, Slovenia (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…