Brink, T.; Milanese, E.; Frérot, L.; Molinari, J.-F.: Simulation of adhesive wear mechanisms at the nanoscale and an approach towards mesoscale models. MSE Congress, Darmstadt, Germany (2022)
Frommeyer, L.; Brink, T.; Dehm, G.; Liebscher, C.: Atomic scale observations of Ag segregation in a high angle grain boundary in Cu. PICO 2022, Kasteel Vaalsbroek, The Netherlands (2022)
Frommeyer, L.; Brink, T.; Freitas, R.; Frolov, T.; Dehm, G.; Liebscher, C.: Characterization of the atomic structure of grain boundary phases in pure Cu. Sixth Conference on Frontiers of Aberration Corrected Electron Microscopy PICO 2021, vitual, Kasteel Vaalsbroek, The Netherlands (2021)
Brink, T.: Thermodynamics. Lecture: Lecture on Thermodynamics, Max Planck Institut für Eisenforschung (demnächst Max Planck Institute for Sustainable Materials), 4 lectures à 2 h, Düsseldorf, Germany, May 14, 2024 - June 11, 2024
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.