Brinckmann, S.: Friction and wear of austenite steel: plasticity and crack formation. 71st Annual Meeting & Exhibition of the Society of Tribologists and Lubrication Engineers (STLE 2016), Las Vegas, NV, USA (2016)
Duarte, M. J.; Brinckmann, S.; Renner, F. U.; Dehm, G.: Nanomechanical testing under environmental conditins of Fe-based metallic glasses. 22st International Symposium on Metastable Amorphous and Nanostructured Materials, ISMANAM 2015, Paris, France (2015)
Brinckmann, S.: Nanotribology and crack initiation. Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart, Germany (2015)
Fink, C.; Brinckmann, S.; Shin, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. Frühjahrstagung der Sektion Kondensierte Materie der Deutschen Physikalischen Gesellschaft
, Berlin, Germany (2015)
Brinckmann, S.; Fink, C.; Dehm, G.: Roughness and Microstructure Development during Nanotribology in Austenite. DPG-Spring Meeting, Berlin, Germany (2015)
Brinckmann, S.: Shear deformation in FCC metals: Fundametal and applied research. Seminar at Institute of Materials Physics, Georg-August-Universität Göttingen, Göttingen, Germany (2014)
Brinckmann, S.: Nanotribology mechanisms due to microcontacts in Austenite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Brinckmann, S.: Combining Atomistic and Dislocation Dynamics into a Concurrent Multiscale Model. Seminar zur Physik der kondensierten Materie, Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Stuttgart, Germany (2013)
Brinckmann, S.: Deformation localization and strain hardening during micro shear experiments on gold in the SEM. Nanomechanical Testing in Materials Research and Development IV, Olhão (Algarve), Portugal (2013)
Brinckmann, S.: Joining 3D Dislocation Dynamics and 3D Molecular Dynamics into a Concurrent Multiscale Model. SES 50th Annual Technical Meeting and ASME-AMD Annual Summer Meeting, Providence, RI, USA (2013)
Brinckmann, S.: Discrete Disclination Dynamics in comparison to Discrete Dislocation Dynamics. SES 50th Annual Technical Meeting and ASME-AMD Annual Summer Meeting, Providence, RI, USA (2013)
Brinckmann, S.: Studying very short cracks with a 3D multiscale model. DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), Regensburg, Germany (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.