Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
Stein, F.; Li, X.; Palm, M.; Scherf, A.; Janda, D.; Heilmaier, M.: Fe–Al Alloys with Fine-Scaled, Lamellar Microstructure: A New Candidate for Replacing Steels in High-Temperature Structural Applications? 60th Anniversary Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2014)
Stein, F.: Stability, Structure and Mechanical Properties of Transition-Metal-Based Laves Phases. Institut de Chimie et des Matériaux, CNRS-Université Paris Est, Paris, France (2013)
Stein, F.: Experiments on the Peritectoid Decomposition Kinetics of the Intermetallic Phase Nb2Co7. 4th Sino-German Symposium on Computational Thermodynamics and Kinetics and Its Application to Materials Processing, Bochum, Germany (2013)
Stein, F.; Vogel, S. C.: Structure and Stability of the γ Brass-Type High-Temperature Phases in Al-Rich Fe–Al(–Mo) Alloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Vogel, S. C.; Brown, D. W.; Okuniewski, M.; Stebner, A.; Stein, F.: Characterization of Intermetallics with the HIPPO & SMARTS Neutron Beam-Lines at LANSCE. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
He, C.; Stein, F.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb Systems. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; He, C.: Experimental Investigations of the Fe–Al–Nb System: Solidification and Liquidus Surface. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; Voß, S.; Palm, M.: Mechanical properties of transition-metal laves phases. Plasticity 2012, Symp. on Plasticity and Its Current Applications, San Juan, Puerto Rico (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…