Roters, F.; Diehl, M.; Shanthraj, P.: On the importance of using 3D microstructures in Crystal Plasticity Simulations. Symposium: 3D materials characterization at all length scales and its applications to iron and steel, Düsseldorf, Germany (2017)
Roters, F.; Kok, P.: An integrated approach on microstructure, damage and texture modelling of modern steels. 5th International Conference on Steels in Cars and Trucks, SCT 2017
, Amsterdam, The Netherlands (2017)
Liu, C.; Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.; Sandlöbes, S.; Dong, J.: An integrated crystal plasticity-phase field approach to locally predict twin formation in magnesium. DGM Meeting, "Herausforderungen bei der skalenübergreifenden Modellierung von Werkstoffen ", Regensburg, Germany (2017)
Roters, F.; Wong, S. L.; Shanthraj, P.; Diehl, M.; Raabe, D.: Thermo mechanically coupled simulation of high manganese TRIP/TWIP Steel. 5th International Conference on Material Modeling, ICMM 5, Rome, Italy (2017)
Roters, F.; Bambach, M.; Wong, S. L.: Development of dislocation density based constitutive models ? the parameter dilemma. GAMM 2017, 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics
, Weimar, Germany (2017)
Diehl, M.; Cereceda, D.; Wong, S. L.; Reuber, J. C.; Roters, F.; Raabe, D.: From Phenomenological Descriptions to Physics-based Constitutive Models EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials. EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials
, Aberdeen, Scotland (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…