Rechmann, J.; Krzywiecki, M.; Erbe, A.: Carbon-Sulfur Bond Cleavage During Adsorption of Octadecane Thiol to Copper in Ethanol. Langmuir 35 (21), pp. 6888 - 6897 (2019)
Krzywiecki, M.; Grządziel, L.; Powroźnik, P.; Kwoka, M.; Rechmann, J.; Erbe, A.: Oxide – organic heterostructures: a case study of charge displacement absence at a SnO2 – copper phthalocyanine buried interface. Physical Chemistry Chemical Physics 20 (23), pp. 16092 - 16101 (2018)
Mondragón Ochooa, J. S.; Altin, A.; Rechmann, J.; Erbe, A.: Delamination Kinetics of Thin Film Poly(acrylate) Model Coatings Prepared by Surface Initiated Atom Transfer Radical Polymerization on Iron. Journal of the Electrochemical Society 165 (16), pp. C991 - C998 (2018)
Panther, J.; Rechmann, J.; Müller, T. J. J.: Fischer indole synthesis of 3-benzyl-1H-indole via conductive and dielectric heating. Chemistry of Heterocyclic Compounds 52 (11) (2016)
Rabe, M.; Rechmann, J.; Boyle, A. L.; Erbe, A.: Designing Electro Responsive Self-Assembled Monolayers Based on the Coiled-Coil Peptide Binding Motif. 17th International Conference on Organized Molecular Films” (ICOMF17), New York, NY, USA (2018)
Rechmann, J.: Electron transfer characteristics of gold and oxide-covered copper in aqueous electrolytes modified by self-assembled monolayers. ElecNano8, the 8th international conference on Electrochemistry in Nanosciences
, Nancy, France (2018)
Rechmann, J.: Oberflächenmodifizierung von Zink (Eisen) mit Ethinylphenothiazinen und Charakterisierung. Master, Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (2014)
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…