Ram, F.; Zaefferer, S.; Jäpel, T.; Raabe, D.: Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. Journal of Applied Crystallography 48 (3), pp. 797 - 813 (2015)
Schäffer, A. K.; Jäpel, T.; Zaefferer, S.; Abart, R.; Rhede, D.: Lattice strain across Na–K interdiffusion fronts in alkali feldspar: An electron back-scatter diffraction study. Physics and Chemistry of Minerals 41 (10), pp. 795 - 804 (2014)
Zaefferer, S.; Elhami, N. N.; Konijnenberg, P. J.; Jäpel, T.: Quantitative Microstructure Characterization by Application of Advanced SEM-Based Electron Diffraction Techniques. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Jäpel, T.: Grundlagen der Kreuzkorrelationsmethode (delta-EBSD): Einführung in CrossCourt3 (CC3) und Erfahrungen in der praktischen Anwendung von CC3. Seminar Talk at Arbeitskreis EBSD in Garbsen, Garbsen, Germany (2012)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. Euromat 2011, Montpellier, France (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. 2nd International Conference on Material Modelling ICMM 2, Paris, France (2011)
Ram, F.; Zaefferer, S.; Jäpel, T.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.; Jäpel, T.: On the accuracy and precision of orientations obtained by the conventional automated EBSD method. RMS EBSD 2014, London, UK (2014)
Jäpel, T.: Feasibility study on local elastic strain measurements with an EBSD pattern cross correlation method in elastic-plastically deforming material. Dissertation, RWTH Aachen, Aachen, Germany (2014)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…