Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Plastische Verformung an Korngrenzen: Neue Einblicke durch miniaturisierte Zug- und Druckversuche. 11. Tagung Gefüge und Bruch (2015), Leoben, Austria (2015)
Fink, C.; Brinckmann, S.; Shin, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. Frühjahrstagung der Sektion Kondensierte Materie der Deutschen Physikalischen Gesellschaft
, Berlin, Germany (2015)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Insights into dislocation slip transfer by µLaue diffraction. Arbeitskreis-Treffen der Deutschen Gesellschaft für Materialkunde (DGM) e.V. „Rasterkraftmikroskopie und nanomechanische Methoden“, Darmstadt, Germany (2015)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: The mechanical behavior of thin cobalt films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, TU Darmstadt, Darmstadt, Germny (2015)
Dehm, G.: Structure and Nano-/Micromechanics of Materials. Chemisch-Physikalisch-Technische Sektion der Max-Planck-Gesellschaft, Berlin, Germany (2015)
Dehm, G.: New Insights into Materials Phenomena by Advanced TEM. Symposium: Advanced Materials Analysis by latest STEM Technologies, Mülheim an der Ruhr, Germany (2015)
Brinckmann, S.; Fink, C.; Dehm, G.: Roughness and Microstructure Development during Nanotribology in Austenite. DPG-Spring Meeting, Berlin, Germany (2015)
Dehm, G.: Probing deformation mechanisms of Cu structures relevant for electronic applications. Electronic Materials and Applications, Orlando, FL, USA (2015)
Dehm, G.: Phase stability in nanostructured metallic materials with exceptional strength. 2015 MRS Fall Meeting, Symposium VV: In situ study of synthesis and transformation of materials, Boston, MA, USA (2015)
Harzer, T. P.; Djaziri, S.; Raghavan, R.; Dehm, G.: Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Probing deformation and fracture of materials with high spatial resolution. EDSA 2015 – International Workshop on Stress Assisted Environmental Damage in Structural Materials, Chennai, India (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Are micro-fracture tests reliable? 2015 MRS Fall Meeting and Exhibit - Symposium T: Strength and Failure at the Micro and Nano-scale-From fundamentals to Applications
, Boston, MA, USA (2015)
Dehm, G.: Differences in deformation behavior of Cu structures containing individual grain boundaries. Symposium RR: Scaling Effects in Plasticity - Synergy between Simulations and Experiments, Fall MRS, Boston, MA, USA (2014)
Hodnik, N.; Baldizzone, C.; Jeyabharathi, C.; Dehm, G.; Mayrhofer, K. J. J.: Bridging the gap between electrochemistry and microscopy: electrochemical IL-TEM and in-situ electrochemical TEM study. 2nd Conference on in In-situ and Correlative Electron Microscopy, Saarbrücken, Germany (2014)
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.