Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Role of temperature on micromechanical fracture behavior of Laves phase in Mg–Al–Ca ternary alloy. FEMS Euromat 2023, Frankfurt am Main, Germany (2023)
Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Dehm, G.: Grain boundary phases in metallic materials: Structure, stability and properties. MiFuN III - Microstructural Functionality at the Nanoscale, Venice, Italy (2023)
Dehm, G.: On the interplay between grain boundary complexions and chemical composition for fcc metals. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2023, Bernkastel-Kues, Germany (2023)
Brink, T.; Bhat, M. K.; Best, J. P.; Dehm, G.: Grain-boundary segregation effects on bicrystal Cu pillar compression. DPG Spring Meeting, Dresden, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Microscale fracture behavior of Laves phases in the Mg–Ca–Al ternary alloy system. 86. Annual Meeting of DPG and DPG-Frühjahrstagung (DPG Spring Meeting) of the Matter and Cosmos Section (SMuK), Dresden, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Microscale fracture behavior of Laves phases in the Mg–Ca–Al ternary alloy system. DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM), Dresden, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Deformation mechanism of complexions in a Cu grain boundary under shear. FEMS EUROMAT 2023, Frankfurt am Main, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Disconnection activation in complexions of a Cu grain boundary under shear. 19th International Conference on Diffusion in Solids and Liquids (DSL-2023), Heraklion, Greece (2023)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Dehm, G.; Ghidelli, M.: Effect of composition and nanolayering on mechanical properties of Zr100-xCux thin film metallic glasses. Talk at Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium (2022)
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…