Vega-Paredes, M.; Scheu, C.; Aymerich Armengol, R.: Expanding the Potential of Identical Location Scanning Transmission Electron Microscopy for Gas Evolving Reactions: Stability of Rhenium Molybdenum Disulfide Nanocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials and Interfaces 15 (40), pp. 46895 - 46901 (2023)
Aymerich Armengol, R.: Techniques for the assessment of the stability of (sea) water splitting nanocatalysts. Korean Institute for Energy Research, Jeju, South Korea (2023)
Vega-Paredes, M.; Aymerich Armengol, R.; Scheu, C.: Determining the degradation mechanisms and active species of electrocatalysts by identical location electron microscopy. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Jeju, South Korea (2023)
Aymerich Armengol, R.: Determination of the structural and electrochemical stability of nanocatalysts for electrolyzer applications. Chemistry Department, Kangwon National University, Chuncheon-si, South Korea (2023)
Aymerich Armengol, R.: Understanding the stability of nanomaterials through electron microscopy techniques. Physics Department, Technical University of Denmark, Kongens Lyngby, Denmark (2023)
Aymerich Armengol, R.: Stability of 2D oxide and chalcogenide nanomaterials under synthesis and application conditions. MRSEC Seminar Series, Northwestern University, Evanston, IL, USA (2023)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Linnemann, J.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Electron microscopy insights on the mechanism of morphology/phase transformations in manganese oxides. Institut de Nanociència i Nanotecnologia (ICN2), Bellaterra, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Mechanism of coupled phase/morphology transformation of 2D manganese oxides through Fe galvanic exchange reaction. Chemistry Department Seminar, Kangwon National University, Chuncheon, South Korea (2022)
Aymerich Armengol, R.; Lim, J.; Ledendecker, M.; Scheu, C.: The devil is in the details: correlating SMSI catalyst encapsulation layers with electrochemical properties. ElecNano9 2020, online, Paris, France (2020)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…