Wang, X.; Grundmeier, G.: Thin multifunctional silver/fluorocarbon plasma polymer nanocomposite films on metals. The 9th International Conference on Nanostructured Materials, Rio de Janeiro, Brazil (2008)
Wang, X.; Grundmeier, G.: Combined spectroscopic, microscopic and electrochemical analysis of release properties of Ag-nanoparticles embedded in fluorocarbon plasma polymer films. The 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Wang, X.; Grundmeier, G.: Understanding of the Barrier and Release Properties of Thin Model Ag/HDFD-Plasma Polymer Nanocomposite Films. International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA, USA (2007)
Grundmeier, G.; Wang, X.; Barranco, V.; Ebbinghaus, P.: Structure and barrier properties of thin plasma polymers and metal/plasma polymer nanocomposite film. ACHEMA, Frankfurt a. M., Germany (2006)
Wang, X.; Grundmeier, G.: Investigation of Structure and Stability of Silver Nanoparticles in Fluorocarbon Plasma Polymer Films. 13. Bundesdeutsche Fachtagung für Plasmatechnologie, Bochum, Germany (2007)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…