Dehm, G.: Experimental Insights in Congruent and Non-Congruent Grain Boundary Phase Transformations in Copper by Advanced STEM. International Seminars, Technion - Israel Institute of Technology (Israel), Purdue University (USA), virtual (2021)
Dehm, G.: Congruent and non-congruent grain boundary phase transformations in Copper studied by advanced STEM. Virtual Seminar of Institute Jozef Stefan, Ljubljana, Slovenia (2021)
Liebscher, C.; Lu, W.; Dehm, G.; Raabe, D.; Li, Z.: Complex phase transformation pathways in high entropy alloys explored by in situ S/TEM. Third International Conference on High Entropy Materials, Berlin, Germany (2020)
Ahmad, S.; Liebscher, C.; Dehm, G.: To decipher the novel atomic structure of [111] tilt grain boundaries in Al. Material Science and Engineering Congress - MSE 2020, virtual, Darmstadt, Germany (2020)
Devulapalli, V.; Dehm, G.; Liebscher, C.: Unravelling grain boundary structures in Ti thin films using aberration-corrected transmission electron microscopy. MSE Darmdtadt (Virtual), Darmstadt, Germany (2020)
Saood, S.; Liebscher, C.; Dehm, G.: Observing the atomic structure of high angle [111] tilt grain boundaries in Al. Materials Science and Engineering Congress MSE 2020, virtual (2020)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution during tribology in cementite. Materials Science and Engineering Congress (MSE) 2020, online, Darmstadt, Germany (2020)
Hosseinabadi, R.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. DGM Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Duarte, M. J.; Fang, X.; Rao, J.; Dehm, G.: Hydrogen-microstructure interactions at small scale by in-situ nanoindentation during hydrogen charging. Nanobrücken 2020: A nanomechanical Testing Conference, Düsseldorf, Germany (2020)
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.