Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: An atomistically-informed crystal plasticity model to predict the temperature dependence of the yield strength of single-crystal tungsten. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Roters, F.; Zhang, S.; Shantraj, P.: Including damage modelling into crystal plasticity simulation. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Wong, S. L.; Roters, F.: Multiscale micromechanical modelling for advanced high strength steels including both the TRIP and TWIP effect. XXV International Workshop on Computational Micromechanics of Materials, Bochum, Germany (2015)
Diehl, M.; Eisenlohr, P.; Roters, F.; Shanthraj, P.; Reuber, J. C.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Seminar of the Centro Nacional de Investigaciones Metalúrgicas (CENIM) del CSIC , Madrid, Spain (2015)
Roters, F.: Multi-scale Micromechanics and Damage: From Model Development to Real Systems. IEK-Kolloquium „Simulation von Energiematerialien“
, Jülich, Germany (2015)
Wong, S. L.; Roters, F.: A crystal plasticity model for advanced high strength steels including both TRIP and TWIP effect. 12th International Conference on the Mechanical Behavior of Materials ICM 12
, Karlsruhe, Germany (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.