Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using ab initio calculations in designing bcc MgLi–X alloys for ultra-lightweight applications. Advanced Engineering Materials 12 (12), pp. 1198 - 1205 (2010)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab Initio Guided Design of bcc Ternary Mg–Li–X (X=Ca,Al,Si,Zn,Cu) Alloys for Ultra-Lightweight Applications. Advanced Engineering Materials 12 (7), pp. 572 - 576 (2010)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using ab initio calculations in designing bcc Mg-Li alloys for ultra light-weight applications. Acta Materialia 57 (1), pp. 69 - 76 (2009)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Error-propagation in multiscale approaches to the elasticity of polycrystals. Physica Status Solidi (B) 245, pp. 2636 - 2641 (2008)
Counts, W. A.; Friak, M.; Battaile, C. C.; Raabe, D.; Neugebauer, J.: A comparison of polycrystalline elastic constants computed by analytic homogenization schemes and FEM. Physica Status Solidi B 245, pp. 2630 - 2635 (2008)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Identification of fundamental materials‐design limits in ultra lightweight Mg–Li alloys via quantum-mechanical calculations. Multiscale Materials Modeling, Freiburg, Germany (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Fundamental Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys Determined from Quantum-Mechanical Calculations. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab initio Determined Fundamental Materials-design Limits in Mg–Li–X (X = Al, Si, Zn, Ca, Cu) Ternaries. Materials Research Society (MRS) meeting, Boston, MA, USA (2009)
Counts, W. A.; Friak, M.; Raabe, D.; Neugebauer, J.: Ab Initio Determined Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys. 8th International Conference on Magnesium Alloys and their Applications, Weimar, Germany (2009)
Friak, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Using Ab Initio Calculations in Designing BCC Mg–Li Alloys for Ultra Light-Weight Applications. THERMEC'2009: International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, Berlin, Germany (2009)
Friak, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Theory guided design of bcc Mg-Li alloys for ultra-light weight applications. ICSMA 15: International Conference on the Strength of Materials, Dresden, Germany (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Fundamental materials-design limits in ultra light-weight Mg-Li alloys determined from ab initio calculations. Seminar in the Department of Low Dimensional Structures and Metastable Phases at the Max Planck Institute for Metals Research, Stuttgart, Germany (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab initio determined materials-design limits in ultra light-weight Mg-Li alloys. Seminar in the Department of Strukture at the Institute of Physics of Materials of the Academy of Sciences of the Czech Republic and Institute of Chemistry of the Faculty of Sciences of Masaryk University, Brno, Czech Republic (2009)
Friák, M.; Sander, B.; Ma, D.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Ab-initio based multi-scale approaches to the elasticity of polycrystals. Seminar at the Department of Physical Metallurgy and Materials Testing at Montan Universität Leoben, Leoben, Austria (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…