Frenznick, S.; Stratmann, M.; Rohwerder, M.: A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting. Review of Scientific Instruments 79 (4), 043901 (2008)
de la Fuente, D.; Rohwerder, M.: Fundamental investigation on the stability of the steel/coating interfaces contaminated by submicroscopic salt particles. Progress in Organic Coatings 61 (2-4), pp. 233 - 239 (2008)
Hausbrand, R.; Stratmann, M.; Rohwerder, M.: The physical meaning of electrode potentials at metal surfaces and polymer/metal interfaces: Consequences for delamination. Journal of the Electrochemical Society 155 (7), pp. C369 - C379 (2008)
Rohwerder, M.; Michalik, A.: Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochimica Acta 53 (3 SPEC. ISS.), pp. 1301 - 1314 (2007)
Zhong, Q.; Rohwerder, M.; Shi, L.: The effect of ionic penetration on semiconducting behaviour of temporarily protective oil coating on the surface of AISI stainless steel. Materials and Corrosion-Werkstoffe und Korrosion 56 (9), pp. 597 - 605 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.