von Pezold, J.; Neugebauer, J.: Hydrogen enhanced local plasticity - An atomistic study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Neugebauer, J.: Ab initio design of engineering materials: Status and challenges. UCSB-MPG Workshop on Inorganic Materials for Energy Conversion, Storage and Conservation, UCLA Lake Arrowhead Conference Center, CA, USA (2008)
Neugebauer, J.: Ab initio based modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. UCSB Seminar, University of California, Santa Barbara, USA (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles Determination of Phase Transitions in Magnetic Shape Memory Alloys. Group Seminar in Materials Department, University of California (UCSB), Santa Barbara, CA, USA (2008)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. Deutsche Physikalische Gesellschaft Meeting, Berlin, Germany (2008)
Neugebauer, J.: Ab initio basiertes Computergestütztes Materialdesign: Von der chemischen Bindung zu realen Werkstoffeigenschaften. Seminar at the TU Clausthal, TU Clausthal, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Optical properties of semiconductor nanostructures, a PW-approach to real-space properties. MRL seminar at UCSB, UCSB, Santa Barbara, USA (2008)
Grabowski, B.; Hickel, T.; Neugebauer, J.: From ab initio to materials properties: Accuracy and error bars of DFT thermodynamics. Phonon Workshop, Krakau, Poland (2007)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Determination of symmetry reduced structures by a soft-phonon analysis in magnetic shape memory alloys. 2nd Workshop on ab initio phonon calculations, Cracow, Poland (2007)
Neugebauer, J.: Ab initio thermodynamic and kinetics based on material design: Present status and perspectives. Seminar at the University of Oxford, Dept. of Materials, Oxford, UK (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Phase stability and mechanical properties of alloys. International Max-Planck Workshop on Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Neugebauer, J.: Ab initio thermodynamics. International Max-Planck Workshop Multiscale Materials Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Friák, M.; Neugebauer, J.: First principles study of the anomalous volume-composition effect in Fe-Al and Fe-Ga alloys. 4th Discussion Meeting on the Development of Innovative Iron Aluminum Alloys, Interlaken, Switzerland (2007)
Abu-Farsakh, H.; Neugebauer, J.: Ab-initio study of the thermodynamics and kinetics of N at GaAs(001) surface. PAW workshop 2007, Goslar, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.