Dehm, G.; Jaya, B. N.; Raghavan, R.; Kirchlechner, C.: Probing deformation and fracture of materials with high spatial resolution. Euromat 2015 - Symposium on In-situ Micro- and Nano-mechanical, Characterization and Size Effects
, Warsaw, Poland (2015)
Malyar, N.; Kirchlechner, C.; Dehm, G.: Dislocation grain boundary interaction in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. ICM 12 - 12th International Conference on the Mechanical Behavior of Materials, Karlsruhe, Germany (2015)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Plastische Verformung an Korngrenzen: Neue Einblicke durch miniaturisierte Zug- und Druckversuche. 11. Tagung Gefüge und Bruch (2015), Leoben, Austria (2015)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Insights into dislocation slip transfer by µLaue diffraction. Arbeitskreis-Treffen der Deutschen Gesellschaft für Materialkunde (DGM) e.V. „Rasterkraftmikroskopie und nanomechanische Methoden“, Darmstadt, Germany (2015)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: The mechanical behavior of thin cobalt films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, TU Darmstadt, Darmstadt, Germny (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Probing deformation and fracture of materials with high spatial resolution. EDSA 2015 – International Workshop on Stress Assisted Environmental Damage in Structural Materials, Chennai, India (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Are micro-fracture tests reliable? 2015 MRS Fall Meeting and Exhibit - Symposium T: Strength and Failure at the Micro and Nano-scale-From fundamentals to Applications
, Boston, MA, USA (2015)
Kirchlechner, C.: “What can we learn from X-ray µLaue diffraction and where do we need to be careful?”. Seminar Talk at Helmholtz-Zentrum Geesthacht, Geesthacht, Germany (2014)
Kirchlechner, C.: Local diffraction techniques to probe residual strains/stresses in materials. Theorie and Practice of Modern X-Ray Diffraction, Summer School, Ellwangen, Germany (2014)
Marx, V. M.; Cordill, M. J.; Kirchlechner, C.; Dehm, G.: In-situ stress measurements in thin films using synchrotron diffraction. Summer School: Theory and Practice of Modern Powder Diffraction, Tagungshaus Schönenberg, Ellwangen, Ellwangen, Germany (2014)
Kirchlechner, C.: New insights into the plasticity of micron sized objects by in situ µLaue diffraction. Lecture at Universität Münster, Münster, Germany (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Design and development of fracture property measurement techniques at the small scale. ICAMS (RUB), Bochum, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Berger, J.; Cordill, M. J.; Dehm, G.: In-situ stress measurements in Cu films using synchrotron radiation. "Mechanical Issues for Flexible Electronics" Flex Workshop, Erich Schmid Institut, Leoben, Leoben, Austria (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.