Shah, V.; Sedighiani, K.; Van Dokkum, J. S.; Bos, C.; Roters, F.; Diehl, M.: Coupling crystal plasticity and cellular automaton models to study meta- dynamic recrystallization during hot rolling at high strain rates. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 849, 143471 (2022)
Shah, V.; Krugla, M.; Offerman, S. E.; Sietsma, J.; Hanlon, D. N.: Effect of silicon, manganese and heating rate on the ferrite recrystallization kinetics. ISIJ International 60 (6), pp. 1312 - 1323 (2020)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites for Recrystallization using Crystal Plasticity Simulations. 7th International Conference on Recrystallization and Grain Growth, Ghent, Belgium (2019)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites During Recrystallization. M2i conference “Meeting Materials”, Noordwijkerhout, The Netherlands (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.