Rechmann, J.; Krzywiecki, M.; Erbe, A.: Carbon-Sulfur Bond Cleavage During Adsorption of Octadecane Thiol to Copper in Ethanol. Langmuir 35 (21), pp. 6888 - 6897 (2019)
Krzywiecki, M.; Grządziel, L.; Powroźnik, P.; Kwoka, M.; Rechmann, J.; Erbe, A.: Oxide – organic heterostructures: a case study of charge displacement absence at a SnO2 – copper phthalocyanine buried interface. Physical Chemistry Chemical Physics 20 (23), pp. 16092 - 16101 (2018)
Mondragón Ochooa, J. S.; Altin, A.; Rechmann, J.; Erbe, A.: Delamination Kinetics of Thin Film Poly(acrylate) Model Coatings Prepared by Surface Initiated Atom Transfer Radical Polymerization on Iron. Journal of the Electrochemical Society 165 (16), pp. C991 - C998 (2018)
Panther, J.; Rechmann, J.; Müller, T. J. J.: Fischer indole synthesis of 3-benzyl-1H-indole via conductive and dielectric heating. Chemistry of Heterocyclic Compounds 52 (11) (2016)
Rabe, M.; Rechmann, J.; Boyle, A. L.; Erbe, A.: Designing Electro Responsive Self-Assembled Monolayers Based on the Coiled-Coil Peptide Binding Motif. 17th International Conference on Organized Molecular Films” (ICOMF17), New York, NY, USA (2018)
Rechmann, J.: Electron transfer characteristics of gold and oxide-covered copper in aqueous electrolytes modified by self-assembled monolayers. ElecNano8, the 8th international conference on Electrochemistry in Nanosciences
, Nancy, France (2018)
Rechmann, J.: Oberflächenmodifizierung von Zink (Eisen) mit Ethinylphenothiazinen und Charakterisierung. Master, Institut für Organische und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we investigate the segregation behavior and complexions in the CoCrFeMnNi high-entropy alloys (HEAs). The structure and chemistry in the HEAs at varying conditions are being revealed systematically by combining multiple advanced techniques such as electron backscatter diffraction (EBSD) and atom probe tomography (APT).
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…