Camuti, L.; Kim, S.-H.; Podjaski, F.; Vega-Paredes, M.; Mingers, A. M.; Acartürk, T.; Starke, U.; Lotsch, B. V.; Scheu, C.; Gault, B.et al.; Zhang, S.: Kinetics and direct imaging of electrochemically formed palladium hydride for efficient hydrogen evolution reaction. Physics > Chemical Physics (2025)
Cheng, N.; Kanzler, L.; Jiang, Y.; Mingers, A. M.; Weiss, M.; Scheu, C.; Marschall, R.; Zhang, S.: Activity and stability of ZnFe2O4 photoanodes under photoelectrochemical conditions. ACS Catalysis 14 (14), pp. 10789 - 10795 (2024)
Bucher, J.; Quinson, J.; Mingers, A. M.; Zhang, D.; Arenz, M.: On the facile and accurate determination of the Pt content in standard carbon supported Pt fuel cell catalysts. Analytica Chimica Acta 1101, pp. 41 - 49 (2020)
Luo, H.; Li, Z.; Mingers, A. M.; Raabe, D.: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science 134, pp. 131 - 139 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…