Neugebauer, J.: Materials design based on ab initio thermodynamics and kinetics. Mid-term COST conference on Multiscale Modeling of Materials, Brno, Czech Republic (2008)
Friák, M.; Sob, M.; Kim, O.; Ismer, L.; Neugebauer, J.: Ab initio study of the alpha-iron stability limits. Ab initio Description of Iron and Steel: Magnetism and Phase diagrams (ADIS 2008), Ringberg castle, Tegernsee, Germany (2008)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Influence of vacancies and explicit anharmonicity. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Ismer, L.; Friák, M.; Hickel, T.; Neugebauer, J.: Effect of interstitial carbon on the magnetic structure of fcc iron: Towards an ab-initio simulation of austenitic steels. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles: The martensitic transition & magnetism, The pre-martensitic transition & soft modes, Off-stoichiometry & the stability of the phases. Workshop on magnetic shape memory alloys, Bremen, Germany (2008)
Neugebauer, J.: Ab initio based modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. Kolloquium der TUM, Garching, Germany (2008)
Ma, D.; Raabe, D.; Roters, F.; Friák, M.; Neugebauer, J.: Modeling Rolling Textures of Beta Ti Alloys Using Constitutive Data From Ab-initio Simulations. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Sander, B.; Ma, D.; Friak, M.; Neugebauer, J.; Raabe, D.: Texture Evolution during Casting and Hot Rolling of a β-Ti-Nb alloy. 15th International Conference on the Texture of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Lymperakis, L.; Neugebauer, J.: Thermodynamics and adatom kinetic on non-polar GaN surfaces: origin of a strong growth anisotropy. E-MRS Spring meeting, Strasbourg, France (2008)
Lymperakis, L.; Neugebauer, J.: Ab-initio based calculation of GaN surfaces, interfaces, and extended defects. Colloquium Paul-Drude-Institut Berlin, Berlin, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Optical properties of semiconductor nanostructures including strain and piezoelectric effects. PARSEM meeting and workshop, Cambridge, UK (2008)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: Ab initio Investigations of Temperature Dependent Effects in MSM Alloys. Antragskolloquium SPP1239, Dresden, Germany (2008)
Neugebauer, J.: Optimizing materials properties and epitaxial growth of semiconductor devices by ab initio based multiscale modeling. Workshop "Molecular Modelling and Simulation in Applied Materials Science", Frankfurt a. M., Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.