Duarte, M. J.; Fang, X.; Brinckmann, S.; Dehm, G.: New approaches for in-situ nanoindentation of hydrogen charged alloys: insights on bcc FeCr alloys. DPG Spring Meeting of the Condensed Matter Section, Berlin, Germany (2018)
Dehm, G.: “Mechanical microscopy”: Resolving the mechanical behavior and underlying mechanisms of materials with high spatial resolution. The 18th Israel Materials Engineering Conference (IMEC-18), Dead Sea, Israel (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Differences in dislocation source activation stress in the grain interior and at twin boundaries using nanoindentation. Nanobruecken 2018, Erlangen, Germany (2018)
Duarte, M. J.; Harzer, T. P.; Dehm, G.: Towards ultra-strong alloys: thermal stability and diffusion kinetics of thin films by in-situ TEM. CALPHAD XLVII Conference, International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, Querétaro, Mexico (2018)
Herbig, M.; Parra, C.D.; Lu, W.; Toji, Y.; Liebscher, C.; Li, Y.; Goto, S.; Dehm, G.; Raabe, D.: Where does the carbon atom go in steel? – Insights gained by correlative transmission electron microscopy and atom probe tomography. International Symposium on Steel Science 2017, Kyoto, Japan (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.