Raabe, D.; Li, Y.; Ponge, D.; Sandlöbes, S.; Choi, P.-P.; Hickel, T.; Kirchheim, R.; Neugebauer, J.: Nanoscale Transformations in Steels. German-Chinese High-level Workshop on “Microstructure-driven Design and Performance of Advanced Metals”, Institute of Metals Research (IMR) of the Chinese Academy of Science (CAS), Shenyang, China (2013)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Abou-Ras, D.; Dietrich, J.; Raabe, D.: Exploring the internal interfaces at the atomic-scale in Cu(In,Ga)Se2 thin-films solar cells. 1st EU APT Workshop, CEA/MINATEC, Grenoble, France (2012)
Cojocaru-Mirédin, O.; Choi, P.; Würz, R.; Abou-Ras, D.; Raabe, D.: Study on internal interfaces in CIGS thin-films solar cells using atom probe tomography. 27th EU PVSEC, Frankfurt, Germany (2012)
Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Atomic-scale analysis of Cu(In,Ga)Se2 grain boundaries. 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt a. M., Germany (2012)
Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Würz, R.: Study of impurities redistribution inside the cigs absorber layer by atom probe tomography. Photovoltaic Technical Conference - Thin Film & Advanced Silicon Solutions 2012 (PVTC 2012), Aix-en-Provence, France (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.